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Abstract

We provide theoretical guarantees for label consistency in gener&lirgshns
problems, with an emphasis on the over tted case where the number of clusters
used by the algorithm is more than the ground truth. We provide conditions under
which the estimated labels are close to a re nement of the true cluster labels. We
consider both exact and approximate recovery of the labels. Our results hold for
any constant-factor approximation to tkemeans problem. The results are also
model-free and only based on bounds on the maximum or average distance of the
data points to the true cluster centers. These centers themselves are loosely de ned
and can be taken to be any set of points for which the aforementioned distances
can be controlled. We show the usefulness of the results with applications to some
manifold clustering problems.

1 Introduction

Consider the problem of clustering data points sampled according to some probability measure
from a normed space with normk Ky . In the ideal setting, the generalizkdneans clustering
minimizes the population cost function

Z
1=p
Q(; ):= 1minL kx  -k§d (x) (1)
where =( 1;:::; L) 2 X! isasetol vectorsinX, for some xed integet.. In practical data
analysis, we are given a sampbbe;; :::; Xpg drawn from and solve an empirical version (i),
namely,
X 1=p
Q)= Q(:P):= =  min kaq kg )

i=1

P
Here,P, := 1, , isthe empirical measure associated with the sample arglthe point

which is determined solely by an unknown data-generating process. These true labels are not
necessarily related to the optimal solutiongbf or (2). To distinguish the two, we refer to the
clustering induced byz;) as thetrue clustering, while a clustering that minimizes the generalized
k-means cost functio(®), i.e., the clustering induced lff ), is referred to as aaptimal k-means
clustering. In this paper, we consider thabel consistencproblem, that is, how close the labels

(b) estimated bk-means clustering are to the true lab@g. Note that we allow the number of
k-means clustert to be different from the true number of clust&s
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In the above formulation, the case where 2, X = RY andk ky is the Euclidean norm leads to

the classical and widely usédmeans problem. Much of the theoretical analysik-oheans has been
performed in this case. Early work has focused on how close the optimization problems based on the
empirical and ideal cost functiorf®) and(1) are to each other, where the closeness is measured in

terms of the recovered centers (i.@and ) or the optimal value of the objective function.

Such consistency results are proved, for the global minimize(2)pin the early work of 22,

29] and also in B0, 19] from the vector quantization perspective. These classical results do not
directly apply to the performance of themeans in practice, mainly because solV{g8yis NP-hard

and approximation methods are usually applied to deal with it. Also, considerations of the label
consistency problem are absent from this line of work since no true clustering, externaktmtens
problem, is assumed to exist.

More recently, there has been more interest in the consistency of pretivedins algorithmsiy, 21]

as well as the label consistency problem. Lu and ZIgdli¢btain sharp bounds on the label consis-
tency of the Lloyd's algorithmZ0] under a sub-Gaussian mixture model. Semide nite programming
(SDP) relaxation is another popular technique for deriving polynomial-time approximations to the
k-means problendg]. Its label consistency has been studied when data is generated from the stochas-
tic ball model B, 10], sub-Gaussian mixture2%, 8, 9], the Stochastic Block Model (SBMP]

and general model4.§]. Convex clustering is another relaxation method whose label consistency
has been discussed i84, 27, 11, 31]. The literature on community detection in SBM, a network
clustering problem, is also mainly focused on label consistency and inspires our work here; see
[1, 33] for a review of those results. For label consistency in kernel spectral clustering, see [2].

In this paper, we study the label consistency of approximate solutions of the genekaliremhs
problem(2) whenL K. Our focus will be on the over tted case whdrte> K . This is often
relevant in practice since the data-generating process may have a natural number ofiCluktgris
unknown a priori. An example is the sub-Gaussian mixture Witbomponents. More interesting
examples are given in Section 3. All the aforementioned works on label consistency exclusively
consider the correctly- tted cade = K. We show that when the data-generating process admits a
set of centers that satisfy certain separation conditions, estimated labels witl clusters, are

close to are nementof the true labels. These bounds reduce to the label consistency criteria for
L = K, but have no counterpart in the literature for K .

Over tting in k-means is considered iB2, 23] where it is shown to improve the approximation factor

(see Assumption 1(b)) of certain polynomial-tikaneans algorithms. Analysis of the approximation

factor is concerned with how close one can get to the optimal value é&ftheans objective function.

In contrast, we are concerned with the label recovering problem and not directly concerned with
how well the objective function is approximated. Our work is also aligned with the recent trend of
beyond worst casanalysis of the NP-hard problengj [where the performance of the algorithms

are considered assuming that there are some meaningful structures in the data (e.g., true clusters). We
refer to Remark 1 for a more detailed comparison with this literature.

Our results are algorithm-free in the sense that they apply to any algorithm that achieves a constant-
factor approximation to the optimal objective. They are also model-free in the sense that we do not
make any explicit assumption on the data-generating process. This is important in practice, since
many common data models, such as sub-Gaussian mixtures, are often too simpli ed to capture real
clustering problems. We provide examples of more complicated data models in Section 3 and show
how our general results can provide new insights for these models. ISimeans clustering often
appears as a building block in many sophisticated clustering algorithms, we believe our results will
be of broad interest in understanding the performance of clustering algorithms in over tted settings.

Notation. Q( ; ) is only dependent on the set of values among the coordinatesAdthough we

view as a vector (for which the order of elements matter), with some abuse of notation, we view
Q( ; ) as aset function (mappirf to R) that is only sensitive to the set of values represented by
This justi es using the the same symbol for the function irrespective of the number of coordinates
of ,i.e., the number of clusters. The reason to keap an (ordered) vector is to make the cluster
labels well-de ned. For simplicity, lek k = k ky . For the case whe¢  RY, one often takes

k k to be the Euclidean norm, but our results are valid for any norfiRgrand more broadly any
normed spac¥ .



2 Main Results

We rst state assumptions about tkemeans clustering algorithm.

Assumption 1. Consider an algorithm for the generaliz&dmeans problenf2), referred to as
ALG(p) hereafter, and lef(™) 2 X - andXK) 2 X K pe its estimated centers when applied ith
andK clusters, respectively. Le&t K. Assume that AL@] has the following properties, for all
input sequencel;):

(a) Efciency: The Voronoi cell of every estimated cerY contains at least one @k;).
(b) -approximation:@(b“‘)) min ,x « @( ), and similarly withK replaced byL .

Ef ciency can be achieved by substituting centers whose Voronoi cells have an empty intersection
with f x; g, by those having the opposite property. Feapproximation, the factor can depend on

the number of clusted§ (orL). For example, th&-means++ algorithm has= O(log K ), with

high probability over the initialization3]. However, there are also constant-factor approximation
algorithms fork-means where = O(1) independent oK (or L) [24, 13, 15]. For example,

with local searchk-means++ can achieve a constant-factor approximatiéh [In addition, -
approximation is not required for all inputs. That is, we are not concerned with the worst-case
approximation factor. The in Assumption 1(b) is the approximation factor of the algorithm on the
speci ¢ data under consideration. It is enough for an algorithm to achieve good approximation only
on the data of interest.

For some of the results, Assumption 1(b) can be replaced with the following modi ed version:
(P -approximation only folK clusters plus a mononoticity assumptidE(b(L)) @(b(" ).
Mononaoticity is also a reasonable requirement and obviously true for the lexaeans solutions.

Next, we extend the de nition of the misclassi cation rate to the over tted case.

De nition 1. The (generalized) misclassi cation rate between two label veco?s[K]" and
b2 [L]",withK L,is

1 X
Miss(z; &) = min - 1ifz 6 ! (B)g;
' i=1

where the minimization ranges over all surjective mapdL]! [K].

WhenL = K, a surjective map is necessarily a bijection and the above becomes the usual
de nition of misclassi cation rate when the number of clusters is correctly identi ed. In this case,
Miss(z;b) = 0 means that there is a one-to-one correspondence between the estimated and true
clusters. The generalized de nition above allows us to extend this notion of exact recovery to the
casel > K . In particularMiss(z; b) = 0 whenL > K , if and only if bis are nementof z. To see

this, note thaMiss(z; b) = 0 implies the existence of amap: [L]! [K]suchthat (B) = z for

alli. Thisin turn is equivalenttaa = bo =) 2z = z5, which is the re nement relation for the
associated clusters. In genefdiss(z; b) is small if b is close to a re nement of.

We also use the (optimal) matching distances between elements of two vectors viewed as sets.
Denition2. For 2X'and 2XK, K denethe’; and’, optimal matching distances as

_ X 1=p
di (; )=min  max K ki do(; )=min K w kP
k=1
where :[K]! [L]ranges over all injective maps.

ForK = L,d; isan upper bound on the Hausdorff distance between the two sets. Obviously, we
haved; d, foranyp 1.

2.1 Distance to true centers

Letz = ()L, 2 [K]" be a given set of true labels for the data poix9[., . In addition, our
results are stated in terms of a set of vectors ( |, )K.; which we refer to as the “true centers”.



Throughout, will be only vaguely speci ed. The only requirement onis that together with the
observed data poin{;) and the true label&;), they satisfythe deviation bounds in each theorem,
e.g.,maxy i n KX; 2 K in Theorem 1, etc. Lety = i”:l 1f z; = kg=n be the proportion

of observed data points in true cluskeand let i, = ming .

We let Pbe a solution of th&-means algorithm with. K centers and Iy 2 argmin. kx; b

be the corresponding estimated labels. Our rst result provides guarantees for exact label recovery,
in the extended sense of recovering a re nement of the true partition WheK and the exact
partition whenL = K.

Theorem 1(Exact recovery) Consider a vector of (true) centers 2 X K and labelgz )., 2 [K]".
Pick ; > Osuchthamax; ; n kX 2 K , and

min  k k 3
(k:k 9): k6 kO K ke (3)

Consider an algorithm ALQ) for problem(2), satisfying Assumption 1, and Ig); 2 [L]" and
b2 X L be the estimated labels and centers of Ab)G(pplied with the. K . Then,

a+ ).

a8 )hs o) Mssem=0; g ) G0 @

WhenL = K, the assertioMiss = 0 means that there is a permutatioon [K ] such that (b) = z
for all i, that is, we have the exact recovery of lab@g in the classical sense. Whén> K |
Theorem 1 guarantees the exact recovery of a re nement of the true (@pels

Example 1(Stochastic Ball Model) Assume that data are generated from the stochastic ball model
considered in6], wherex; = , + r; with r; sampled independently from a distribution supported
on the unit ball inRY. Here,f , g, RY are a xed set of centers. Clearly, we can take
=1 in Theorem_ 1. Then, any-approximate&k-means algorithm achieves exact fecovery when
> 2+2(1+ )= min forL = K. Inthe over tted case, when> 4+2(1+ )= s, the
estimated label vector is an exact re nement of the true lafz)s O

In the above example, although it is intuitively clear that for a suf ciently largéne solution of the
k-means problem should achieve exact label recovery (in the extended sense), Theorem 1 allows us
to provide a provable guarantee for any constant-factor approximation, with an explicit bound on the
separation parameter

We now turn to approximate recovery where the misclassi cation rate is small.
Theorem 2 (Approximate Recovery)Copsider a vector of (true) centers 2 X X and labels
(z), 2 [K]". Pick"; > Osuch thaf(} nkx; . KPP " and(3) holds. Consider an

algorithm ALG) for problem(2), satisfying Assumption 1, and ig), 2 [L]" and b2 XL pe
the estimated labels and centers of ALG applied with.the K . Then, for any > 2,

ik (1-;;p)c =) Miss(z;b) <K (1+ )PcP . p; dp(t? ) (1+1?p)": (5)

The key difference between Theorems 1 and 2 is the bounds assumed on the deliatisns
kx; 2 K1 2 [n]. Theorem 1 assumes a bound on the maximum distance to true cemaer<);,

while Theorem 2 assumes a bound on an average dist@hce,— DP)**r, leading to a more relaxed
condition.

Theorem 2 provides an upper bound on the misclassi cation rate when a certain separation condition

is satis ed. To simplify, consider the cage = = p =2 and takec = 2:1. Then, Theorem 2
implies the following: For every> 0, there exists a constact( ; min) > 0such that if
=" cl; min); (6)

then any 2-factok-means algorithm will have Miss  to the target labels. The next proposition
shows that condition (6) is sharp up to constants.

Proposition 1. There exists a family of datasédt&x;; z)giL, , withK =2 lg;;\lanced true clusters

(i.e., min =1=2) and parameterized by true center separatioand” = (2~ L, kx; , k?)1*2

4



with the following property: Given any constan® (0; 1=2), there exists a constan( ) > 0, such
that if =" <c »( ), then any 2-factok-means approximation algorithm with = 2 clusters has
misclassi cation rate satisfyiné Miss % Moreover, any 2-factok-means approximation
algorithm withL = 4 clusters will recover a perfect re nement of the original clusters in the above
setting.

The proof of Proposition 1 can be found in the Supplementary Material. This proposition shows that
if the separation conditio(®) is reversed, one can force the performance oflanyeans algorithm

to be arbitrarily close to that of random guessing. The true centers in Prpposition 1 are the natural
centers implied by thk-means cost function for the true labels, that js= % i Xj I z; = kg for
k=1;2. Onecantakei(; mn)=6:3max(1= min;2= )2 andcy( )=sintan (' =45))

for the constants in (6) and Proposition 1.

Remark 1. The separation conditiof®) is related to thalistribution stabilityintroduced in §].
Roughly speaking distribution stability plus the following property implies our condition:

(D1) For every pair of distinct clustes, andC- with centers, and -, there is a poink 2 C-
suchthakx  k k . [k

That is, every cluste€- has points which are closer thanto the centers of other clusters. This
property is quite mild and one expects it to hold with high probability if the distribution of the
points have positive density w.r.t. to the (full-dimensional) Lebesgue measure in a ball around the
center. The above seems to suggest that distribution stability is slightly weaker than our cq@dlition
However, in the presence of (D1), we can also signi cantly relax distribution stability to arrive at
our condition, the details of which are provided in the Supplementary Material. In this sense, these
two notions are closely related but not directly comparable, i.e., neither is weaker than the other in
general.

Example 2 (Sub-Gaussian mixtures) et us assume that the data is generated fréfnr@mponent
sub-Gaussian mixture model = , + d *?w; wherew; = (wi1;:::;Wig) 2 RY is a zero mean
sub-Gaussian noise vector with sub-Gaussian paramgtandz; 2 [K ] is the latent label of thgth
observation. This is an extension of the sub-Gaussian mixture model considergdiatermining
whether( ,)K_, is actually the solution of the population problét) is, itself, challenging and the
answer may depend on the exact distributiorivwfg. Nevertheless, our results allow us to treat

( ) as the true centers. Below we sketch how Theorem 2 applies in this case. The details of the
arguments, including the exact de nition of a sub-Gaussian vector are |q_4;ovided in the Supplementary
Material. Let max = max; ; andset 2 := Ekd “wkiand 2 := 1 [, 2 Assume that

there is a numerical consta@t> Osuch that 2 C 2,,. Then, one can show that

1 X -
P o kX; Zik2> 2 ﬁ e @n NS max = pn
i=1
for some numerical constaet > 0. Taking"? =2 2 andp = 2 in Theorem 2, we have that with
probability at leas.  p,,

2 + )2 2
s> A+ ¢ o Misszh) K@+ PR
2 n min
where is as in(3) andc > 2. In a general problem,,,, max and all can vary withn. In
order to have label consistency for an AlZp&lgorithm, it is enough to have,= = o(1) and

n =411 . The consistency here is based on the extended De nition 1 and includes the
over tted case in which a re nement of the true labels is consistently recovered. We note that the
model in this example includes a very general Gaussian mixture model as a special case, namely the
casew; N (0; ;) where the covariance matrices 2 RY ¢ are allowed to vary with each data

point. In thislgase, one can takgax = maxi i n K iKopWherek ko, denotes the operator norm,

and 2:=31" 1 tr( j)=d O

2.2 Distance to fake centers

We now extend Theorem 2, to allow for “fake” centé®gl_, and the corresponding labélg g.
These can be constructed to reduce the required distance to the datgxQints



Theorem 3(Approximate Recovery, Il)Fora xedL K, consider a vector of constructed centers
€2 X L, constructed labelg = (&), 2 [L]" and true labelg = (z)"; 2 [K]". Assume thae
is are nement oz, i.e. thereise : [L]! [K]suchthate(r) = z foralli 2 [n]. Pick"; > 0
such that

1 X 1=p

= kxi & kP " min k€, €k @)

n i1 1672, (1) 6 B(2)
Consider an algorithm AL for problem(2), satisfying Assumption 1, and @), 2 [L]" be
the estimated label vector of AL®(applied withL clusters. Then, for ang > 2,

s (1%” 5)  Miss(z;b) <K (1+ )PP - - ®)
min

The advantage of Theorem 3 is that when the desired number of clusiecseases, the bound
on the misclassi cation rate can go down: In some applications, by carefully constructing the fake
centers® we can maké smaller ad increases, while roughly maintaining the minimum separation
among fake centers associated with the true clusters. If successful, this implies that a re nement of
the true clustering can be achieved even when it is hard to recover the true clustering itself. In the
following section, we show how this strategy can be applied to some manifold clustering problems.

3 The case for over tting

We now illustrate applications of Theorem 3 in settings where it is hard to recover true clusters, based
on the ideaK , but it is possible to obtain accurate re nements by over tting. The idea is to consider
clusters that look like submanifolds BF'.

3.1 Mixture of curves

We say that a random variabtehas a( ; ) sub-Gaussian curve distributighx = (t) where
t 2 R has a sub-Gaussian distribution with parametand : R! RYisalocally -Lipschitz map.
i.e.,k (t) (s)k jt sjforallt;s 2 Rsuchthajt sj 1.

Proposition 2. Assume thafx;)., are independent draws fromka-component mixture df; )

sub-Gaussian curve distributions. That¥s,=  (tj) wherez; 2 [K],t; Qg independently

acrossi, eachQy is a sub-Gaussian distribution dR with parameter , and each  is locally
-Lipschitz. LetG be the support of the distribution of (t) wheret Q. Assume that

min kx yk > 0; forallké k®
x2Cyk;y2Cyo0

Then, there exist arponsta@t = C(K; ;;; ) such that any ALG(2) satisfying Assumption 1
applied withL,  C" nTlogn clusters recovers a perfect re nementoWith probability 1 n 1.

The signi cance of this result is that one recovers a perfect re nement with the number of partitions

L, = o(n). Itis trivial to obtain a perfect re nement with, = n, but not sowithL,=n! 0. This

is especially the case since one can achieve quite complex cluster con gurations with the model in
Proposition 2, for some of which applyirgmeans withK clusters will have a misclassi cation rate
bounded away from zero. Section 3.3 provides some such examples where the true cluster centers
coincide, causing anl-means algorithm applied with the trb’%to incur a substantial error. See

also Supplementary Material for a discussion of whether O(" nlogn) can be improved.

Various extensions of Proposition 2 are possible. We have the following extension to the noisy setting.
Corollary 1. Assume that the data is givenfay= x; + pl—awi fori 2 [n] where(x;) are as given

in Proposition 2 andv; are sub-Gaussian noise vectors s in Example 2. Then, under the same
assumptions as in Proposition 2, ALG(2) applied with C" nlogn achieves a misclassi cation
rate. K( n=)?+ L withprobability 1 p, n *where , andp, are de nedin Example 2.

Corollary 1 shows that one can achieve consistent clustering (in the generalized senkg) wit{n)
clusters assuming that the noise-to-signal ratig ! Oandn 2= 2., !'1 ;the same conditions
needed in the sub-Gaussian mixture example. Again, this result is signi cant since even in the
noiseless case {, = 0), consistent recovery is not possible with= K for some mixtures of curve

models.
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Figure 1: Line-circle model: (a) Scatter plot for the noisy version. The colors shol thet
estimated clusters y-means. (b) and (c) show the (generalized) misclassi cation rate vershes
radius of the circle, in the noisy and noiseless versions of the model.

3.2 Mixture of higher-order submanifolds

A version of Proposition 2 can be stated for a higher-dimensional version of the mixture-of-curves
model, if we consider generalizédmeans problems with > 2. We say that a random variable
x has & ; ;r ) sub-Gaussian manifold distributidghx = (t) wheret 2 R" has a sub-Gaussian
distribution with parameter and : R’ ! R%isalocally -Lipschitz map. i.e.k (t) (s)k

kt skforallt;s 2 R" suchthakt sk 1.

Proposition 3. Assume thatx;){L,; are independent draws fromka-component mixture of sub-
Gaussian manifold distributions, with parametérs;r ) fork 2 [K], and letr = max, k.
Let G be the support of the distribution of théh component. Assume that
min kx yk > 0; forallké k®
x2Cyx;y2Cyo

Then, there exist a constagjt= C(K;;im ) such that any ALG) satisfying Assumption 1,
applied withL,,  C(n'**" logn)" clusters recovers a perfect re nementofvith probability

1 n 1. Inparticular, forp > r, we have perfect re nement recovery with = o(n) clusters,
with high probability.

It is also possible to extend the results to more general distributions on submanifolds via a notion of
stochastic covering numbers. For random vegtaith distribution ¢ on a submanifol€ RY,

let N (") be the smallest integer for which, there is a high probabiligover ofx, that is, a

nite subsetN C such thaP(minyoy kx  yk ") 1 n 2: We state a generalization of
Proposition 3 to this setting in the Supplementary Material.

3.3 Numerical experiments

We rst consider the (noiseless) line-circle modeRA, an example of mixture-of-curves. This model

has two clusters: (1) The uniform distribution on the circumference of a circle ixetipgane, centred

at the origin, and (2) the standard Gaussian distribution ol tirds. The minimum separation
between the two clusters is the radius of the circle. We also consider the noisy version of this model
where we addN (0; 2l13). We sample data points with equal probability from the two clusters. It is
nearly impossible for the-means to correctly label these two clusters when 2, since the centers

of the two clusters coincide. Figure 1 shows the scatter plot of the data simulated from the noisy
line-circle model, with noise level = 0:1, n = 3000 and = 3. Here, the noise level is set low

for better illustration. Different colors are used to label data points based on the oukpuoiedns
clustering withL = 4, and this demonstrates that each estimated cluster is a subset of a true cluster.

The result aligns with Theorem 3. Although, the true centers coincide (with the origin) ke,

by increasind., we can create fake centers on the line and the circle to have separation close to
and thus get a small missclassi cation rate. The other two panels in Figure 1 show the average

missclassi cation rate over 32 repetitions versuor both the noiseless and noisy € 1) line-circle
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Figure 3: Circle-torus model: (a) Scatter plot for the noiseless version. Colors are used to separate
two true clusters. (b) and (c) show the (generalized) misclassification rate versus 4, the radius of the
circle, in the noisy and noiseless versions of the model.

model. Both show that the misclassification rate is negatively associated with § and L when L > 2.

Similar results are shown for the circle-torus model in Figure 3. Details of this model are discussed
in the Supplementary Material.

Figure 2 shows the results for a line-Gaussian mixture model: z; = £, + Ei/ 2wi € R? where

& = (0,68) and & = (0,0), w; ~ N(0,12), 31 = I» and X5 = diag(c?,0). Here, we have
set 0 = 5 and sampled n = 3000 data points with equal probability from the two clusters. We
also consider its noisy version by setting all the zero elements in s to 0.7, which makes the
model a general Gaussian mixture. Figure 2 shows the average missclassification rate over 32
repetitions for different L. The results are consistent with Theorem 3 showing that as ¢ increases, the
misclassification rate decreases.

4 Proofs

Let us first recall a fact from functional analysis. Consider the space of functions f : [n] — X and let
us equip [n] with the uniform probability measure v,,. Then, from the theory of Lebesgue-Bochner
spaces, | fllp == ([ | f(w)||% dva(w))'/P defines a proper norm on this function space, turning it
into a Banach space LP(v,,; X). In particular, the triangle inequality holds for this norm. Note that

I £llp = (320 11 (i)]/5)/P. We will frequently invoke the triangle inequality in L? (v, X).

T

Let p* := Y, mpber = =30 de: be the empirical measure associated with {&;.}. Recalling

definition (1) of the population cost function, we have, for any £ € X',

K n

1
VP i = ep = i “ _gP
Qe =3 pmin, 16— &7 = 3 min, 16— ol ©)

10.0



We start with three lemmas that are proved in the Supplementary Material:

Lemma 1. Let ALGp) be ak-means a,jgorithm satisfying Assumption 1(b") andlée its output
for L clusters. Furthermore, assurgg L, kxi  , kP)¥™ . ThenQ(® ) @+ )

Lemma 2 (Curvature) Forevery X Land 2XK, withL K,
Q(: ) im:lr? do(; )"53
Lemma3. Assumethanax; i nkxi ,k andd; (B ) . Wher = K,if > 2 +2 ,

there exists a bijective functidn: [K] ! [K] satisfying! (B) = z; 8i 2 [n]. WhenL > K | if
> 2 +4 ,there exists a surjective function: [L]! [K] satisfying! (B) = z; 8i 2 [n].

P
Proof of Theorem 1As(+ L, kx; ,kP)™ max; | nkx; Lk ,combiningLemmal
and 2, we have
o ya. QB D @r)
p\5 2 1=p 1=p
min min

By the condition on in (4), we have=2> (1+ )= =P Thend; (B ) dy(P ) =
(1+ )= .=* which also makes the assumption in Lemma 3 that2 +4 valid. Finally, the
result follows from Lemma 3.

Proof of Theorem 2The argument is similar to one that has appeared in recent literafreZ, 33].
From the proof of Lemma 1 (in the Supplementary Material), we have

X =
Qb ) % K, Bk T @ )
i=1
By Lemma 2
A Qb ) @+ ).
b )5 = =

By the separation assumption@®), =2> (1+ )"= P Hencedy(® ) (1+ )"= P Let
G = fi:z =kg,jGj= nk,and sefly := fi 2C : k ,, Q,ik =cg: LettingSx = G nTy,
we obtain 0

X
JSkJ P=¢® < k Zi l%i kP k Zi bDi kP n(l + )p"p:
i2 Sk i=1
Therefore,
Nk ng P

The last inequality is by assumptio» (1+ )c"= ;Tr? Hence,T is not empty. Furthermore, we

argue thatifi 2 Ty andj 2 T- fork 6 ", i.e. z 6 z, thenlh 8 B . Assume otherwise, that is,
b =1B.Then

1

ke -k k  Bk+k- Bk 2=c<
causing a contradiction.

LetLy :=fh : i 2 TxgandL = szl Lx. De ne afunction! :L! [K]bysetting! () = k

forall* 2 Ly andk 2 [K]. By the property off Tyg shown abovel y;k 2 [K] are disjoint
and nonempty sets. This implies tHatis well-de ned and surjective. Extend to a surjective
I :[L]! [K]by arbitrarily de ning it for[L] n L. Note thatly 2 L x impliesz = k. It follows that
I'(B)= z foralll 2L, and

X i X sy PP"P
1N e MY X iSd_ K@x o
N n n p
=1 k=1
The result follows. -



Proof of Theorem 3By assumption, -approximation holds for bot andL clusters. Then,
Qb &5 where &) = min &():

P
since®t) (L7 " kx; & kP)I*P " by the triangle inequality ihP( ,;X),

min n
X 1=p X 1=p X 1=p
1 ke, bni KP 1 kxi & kP + L kx; tLi kP @a+ ™

n i=1 n i=1 n i=1

LetTy := fi 2 C : k&, bz,i k =cgandSy = G nTg. Then,

X X
ISk P=c < keEi bDi kP keEi qii kP n(l+ )p"p:
i2 Sy i=1
Therefore,
i Ski pPcPmp
ISd o n@+ )P
Ny Ny p

The last inequality is by assumption (1+ )c"= ,f,r‘]’ HenceTy is not empty. Next we argue

thatifi 2 Ty,j 2 T-fork 8 *,i.e.z 6 z,thenh 6 B . Assume otherwise, thats = B . Since
Bis are nementofz, z; 6 z; impliesg 6 B ande(g) 6 k(g ). By the triangle inequality,

k& &k k& Bk+kg Bk 2=c<

causing a contradiction. The rest of the proof follows that of Theorem 2. O

Proofﬁf Proposition 2.Let my be the mean oQy. Then,P(jti mgj >t) 2e =2 7 et

M = 6 2logn. By union bound, with probability 1 2n 2 we haveit; m,j M forall

i 2 [n]. We can coverthe st M;M ] R, with L= M=" 1-D balls of radius'. (Without loss of
generality, we assume thiafis an integer for simplicity.) LeT = f 1;:::; | ogone such cover and
note thatmy + T is an"-coverofm, +[ M;M ]. Let  : R! (mg + T) be the projection from
Rontomy + T. Thenk (ti) 2 ( z @)k jt z(t)j " ,assumingthdt 1= .
Letz?:=argmin o qjti (Mg + -o)jsothat , (t;) = m, + 0. Thenletl, = KL %and x
a bijection :[L,]! [K] [L9anddenethelabelg = 1(z;z". Also consider the map

lo:[K] [LY! [K]givenby!o(k;"% = kandsek:=!,  which is a surjective map from
[Ln]to[K]satisfyinge(g) = z. For® 2 [Ly]Jwith () =(k; 9,dene® = (mg+ -o). Then,
we have§, = (m; + )= z( (1)), hence the above argument gitegt;) Gk .
It is also clear that the the separation condit{@his satis ed since by construction 8("1) 6 B( )
with (C1) = (kg;°9) and (C2) = (ko2;'9), thenk; 6 k, hence®, and €, lie on different
manifolds (o_nq1 andG, ). It_follows that concluEior(S) of Theorem 3 holds fop = 2 and, say,
¢ = 3 but with " replaced with" . Take" = (c¢;' n) ! for constantc; to be determined. Let
;=3 (L+ )=.Aslongasn mn > (c2=¢)?, the sepaISation condition {{8) is satis ed and we
haveMiss(z;b) K (c,=¢1)?=n. Hence, as long ag > Kcy, we will haveMissng) < 1=n

whicrﬂJ impliesMiss(z;p) = 0. We also need to satisfy < 1= thatisc, =" n. Taking
c1 = Kcy+ satis es all the required constraints on The required number of clusters is
p
L, = KL%= KM=" 3Kci nlogn;

which proves the result wit@ = 3K ¢ ;. Note that since,=¢, < 1andn i, 1, the condition
n min > (c2=c1)? is automatically satis ed. The proof is complete. O
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Appendix for “Label consistency in over tted
generalizedk-means”

Linfan Zhang Arash A. Amini
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This appendix contains further discussion of the results, the remaining proofs, details of some
examples and additional numerical experiments.

A Discussion

Proposition 2 and 3 show that perfect re nement for %Jb-gaussian mixture-of-curves model can be
achieved when the number of clusters growk ass O(" nlogn). To the best of our knowledge,

this is the rst such result in the literature, that is, an upper bound on the minimum number of clusters
needed to achieve a perfect re nement of the true clusters. What remains for future investigations to
determine is how tight this bound is. Empirically, we have found exanboles of the mixture-of-curves
model for whichL,, 1 seems to enough, but also an example whgre ~ nlogn seems to be the
required scaling. Figure S1(a) shows a noisp; circle-torus model (cf. Section D.1RwithO;r = 2

and =1 that demonstrates B1e scalibg nlogn. Here, we plot the average misclassi cation

rate over 32 repetitions us,= nlogn for variousn. The fact tBat these plots coincide with each
other for differentn suggests that there is sharp threshgld= C;" nlogn such that withL, > |,
perfect re nement recovery is possible and with < |, impossible. Figure S1(b) shows an
example that exhibits, 1 threshold: A line-circle model with parameterss 4, =1 and line
standard deviation Z.

The fact that, empirically, there are examples for wHighhas to grow as fast a%n logn for a
perfect re nement recovery, suggests that the result of Proposition 2 may be sharp up to constants,
over the class of mixture-of-curves distributions considered.

B Connection to distribution stability

The distribution stability for th& -means assumes the following [1]:

OPT,
kx K2 K. forallx 2 Cy;

Nk

P
whereOPTx = i”:l kx; z k? for theK -means optimal cluster labeilgig [K ]" and optimal
centerd 9. Here,Cy = fi :z = kgandny = jCyj.

In our setting, we do not necessarily need to work with the optknatheans clustering. So let us
generalize the notion as follows: The détagis -distributed with respect to cluster labélzg g
and center$ | gif

kx (k2 kxj 5 k?=nc; forallx 2 Cy;

35th Conference on Neural Information Processing Systems (NeurlPS 2021), Sydney, Australia.



0.4

i
- n=4
0.5 ! ~ n=1778
b oy A n = 7499
) 03 |} n = 31623

7
// N

Average Misclassification Rate
Average Misclassification Rate

0.2
0.3
| \
n =100 \‘\
T = n=1778
n=7499
n = 31623 [ or—p=—t=%
0.1 0.0
0.01 0.10 1.00 4 8 12
L/sgrt(n * log(n)) L
(a) circle-torus model (b) line-circle model

Figure S1: Examples of mixture-of-curve models that exhibit(q) P nlogn and (b)L, = O(1)
re nement recovery threshold.

P
whereCy = fi : z = kgandny = jCyj. Setting: L, kx; , k?= "2andrecalling \ = ny=n,

the condition is equivalent to

kx  k :a—k forall x 2 Cy: (S1)
Let us strengthen the condition slightly and consider the following notion instead
kx  k p; forall x 2 Cy; (S2)
min
where min = miny . (This is without loss of generality: We could have stated our results with
separate center separation parameters for each cluster Femin g K -k, in which case

we could directly compare with the original versi{Bil) We opted for the simpler global center
separation in the paper for simplicity.)

Now assume that the data isdistributed and in addition:
(D1) For all distinct pairgk; *), there isx 2 C- suchthakx Kk k - KK

That is, every cluste€- has points which are closer thanto the centers of other clusters. Then, it
follows that o

I - (S3)

min

which is our separation condition. (Recall that minyg- k - K).

In fact, in the presence of (D1), we can relaxdistribution stability as follows: Assume (D1) and for
thex in (D1) assume that the inequality (§2) holds. Then, our separation conditiB3)follows.

Note that (D1) is quite mild and one expects it to hold almost always if there is some full-dimensional
randomness in the distribution of the points in a cluster.

Alternatively, our separation condition can be written equivalently as
p— .
kx Kk p——=; forallx2f .gsk (S4)

min
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Figure S2: The geometry of the dataset in Proposition 1

Comparing (S4) and (S2), the conditions are somewhat close, but different. Neither condition directly
follow from the other one in general.

Note also that although in the discussion above, we refer to &; as the center of (%, in our general
setting & need not be the optimal center é > cc, Ti-

C Proof of Proposition 1

For « € [0,7/2), consider a constellation of points in R? at locations a; = (esina — §, & cos @),
az = (—esina — §, —ecosa), by = (—esina, ecosa) and by = (e sin o, —¢ cos ). Assume that
n/4 of the data points are on each of the points ay, as, by and bs. Assume that data points in {a1,as}
form cluster 1 and points in {b1, b2} form cluster 2. That is, this is the true cluster labels as specified
by an external source. The true cluster centers are then at locations £ = (—4,0) and &; = (0, 0). We
also have (2 37, ||z; — € ||%)Y/2 = ¢ for true cluster labels {z; }. Now take § = esin a. Figure S2
shows the geometry of this construction.

To show the result, it is enough to use Theorem 2 with properly chosen (fake) centers on the
above dataset. In particular, we are going to show that a 2-factor k-means algorithm has a small
misclassification rate with respect to a new clustering that puts points {a1, b1 } in one cluster and
{az, b2} in another cluster. Consider “fake” centers £7* = (ay + b1)/2 and £3* = (a2 + b2)/2. Then,
the new separation is * = 2e cos & and the new deviation can be taken to be e* = §/2 + esina =
(3/2)e sin o guaranteeing that (L 3, ||z; — Eor [)1/2 < e* where {y;} are labels relative to the new
clustering.

Applying Theorem 2 with k = p = 2, ¢ = 2.1 and 7in = 1/2, as long as 6*/e* > 9 > 3v2¢,
the misclassification rate to the new clustering is bounded above as Miss* < 80(c*/8*)%. We have
£*/§* = (3/4) tan a. Thus, for o < tan—'(4/27) we have Miss* < 45(tan a)? w.r.t. to clustering
{{a1,b1}, {a2,b2}}. Hence, w.r.t. the original clustering, % > Miss > % — 45(tan )2, which can
be made arbitrarily close to % by choosing o small enough.

To see the last step above, let g1, g2, g3, g4 be the fractions of misclassified nodes from each of the
four categories aq, as, b1, ba, w.r.t. to the new clustering (i.e., {y;}). The above argument shows that

1(q1 + g2+ g3 + g4) < 45(tan o)?. The misclassification rate to the original clustering (i.e., {z;})
is then

— 45(tan a)?

N~

. 1/n n 1 1
Miss = ;(1(1 — i) + 1(1 - %)) =3 1(%‘1 + iy) >






RY [4, De nition 3.4.1]. The sub-gaussian norm ¥f is de ned askX k , = sup,s¢ 1+ ku' Xk ,,
wherek k , denotes the sub-gaussian norm of a random variabl&antithe unit sphere iR9.
Alternatively, we can de ne a sub-gaussian vector with parametas a random vector satisfying
PGu™Xj t) 2exp( ;—22) forallu2 S% *andt 0. We willhave k Xk ,. We also

usek k , for the sub-exponential norm of a random variable. For any randoqg variable, we have
kYZ2k , = kYk? [4, Lemma 2.7.6]. Below we apply this fact with = kX k = ( 4 X2,
leading to the following useful lemma.

Lemma S1. Assume thaX 2 RY js a sub-gaussian random vector with parameteiThen kX k is

sub-gaussian with parameter ~ d. In fact, for some universal consta@t> 0,
kkXkk , C ~d; kkxk*k , C? 2d:

2 P d 2 P d 2 2 2 .
Proof. We havekkX k°k iz KXk, = 5 KXjke,  dC® #, for some universal
constantC? > 0. The rst inequality is the triangle inequality fdc k , and the second by the
5quivalence of the sub-gaussian norm and sub-gaussian parameter. Next, we k¢ kikat =
kkX k?k , and the result follows. O

F Details of the sub-gaussian mixture example

By assumptiony; is a sub-gaussian vector with parameter Then, by Lemma Slkw; k?>=d is
sub-exponential with sub-exponential norm 2. By the Bernstein inequality for sub-exponential
variables [4, Corollary 2.8.3],

1 X kwik?z N RN
— _— o>t exp cnmin ———; ——
n d 4 2
i=1 max max
Lett= ,,andrecallthat2= 2. C. Then, for a constamj > O,
12X kw;k? 2
P = ('j >2 2 exp cn—"
max

i=1
In the Gaussian case, N (O; i), itis not hard to see that; is a sub-guassian vector with
rametek ikop. Therefore, in Gaussian mixtures, we havgyx = max;k jkep and 2 =
no1 _
_o=tr( )=d.
i=1 n !

G Extension of Proposition 3

For random vectok with distribution ¢ on some subse€  RY, let N (") be the smallest
integer for which there is a high probabilitycover ofx, that is, a nite subseN C such that
P(minyoy kx  yk ") 1 n 2:WerefertoN (") as the stochastic covering number ef
We have the following extension of Proposition 3.
Proposition S1. Assume thatx;gL; are independent draws from & -mixture where theth
component is a distributionc, onasubseG, R'«. Letz be the label ok; so thatx; j z = k

¢ - Assume that

min kx yk > 0; foralké k®
x2Cyk;y2Cyo0

LetN . (") be the stochastic covering number @f . Then, there exist a consta@t= C(K; ; )
such that any ALGl), satisfying Assumption 1, applied with = l'le N . (Cn 12p) clusters,
recovers a perfect re nement af= ( z;) with probability 1 n 1.

Proof. Let Ny~ C i be the"-net that realizes the stochasticovering number of ¢, and let
k : G ' N g be the corresponding projection operator. Then, foriadyn] for whichz = k, we

haveP(kx; k(x)k>") n 2. By union bound, we havk; z (Xi)k " foralli 2 [n]

with probability at leasi. n . The collection Bf the fake centefr& gP:"l can be taken to be the

union of the nets E:l Ny with cardinalityL, = | N , ("). The rest of the proof follows those
of Propositions 2 and 3 with=(¢;n*™) 1, ¢, =3(1+ )= andc; = K *Pc,. (Note that there is
no condition" < 1= that needs to be satis ed in this case.) O



H Remaining proofs

Proof of Corollary 1. We rst construct fake centers®) for (x;) as in the proof of Proposition 2
and treat them as the fake centersyiarBy the triangle inequality,

X 1=2 X 1=2 X p_ . 1=2 B
% ky| eew k2 % kXi eEi k2 + % kWi = dk2 "+ p 2 n
i=1 i=1 i=1

holds with probability at least p, n 1. The result follows by applying Theorem 3. O

Proof of Proposition 3.The proof follows that of Proposition 2. We only highlight the differences.
Whenz; = k, by Lemma S1kt; mykis sub-gaussian with parametercy = T for some universal
constanty > 0. Thus, we hav@(kt; myk t) 2e =« ) LetM = 3cyr 2logn. By
union bound, with probability atleagt 2n 2, we havekt; mzk M foralli 2 [n]. The"-cover
has to be constructed féu : kuk M ginthe™, norm, which can be done with a net of size at most
LO=(1+2M=")". Take" = (c;n*™P) landletc, =3 (1+ )=.Aslongasn mn > (C=¢)P,

the separation condition i8) is satis ed and we havMliss(z;b) K (c,=¢)P=n. Hence, as long
asc; > K 7Pcy, we will hav%\/liss(z;b) < 1=n which impliesMiss(z;b) = 0. We also need to
satisfy" < 1= thatisc; =" n. Takingc; = K1™Pc, + satis es all the required constraints on
c1. The required number of clusters is

P—— P —
Lhn= KL= K@ +2M=")" = K(1+2¢; 3cor 2n* logn)"
P —
C(n**" logn)"
forC = K(2+201p 3cor 2)". Here, we have uset 2n1=pp logn forn 2. Note that since

c=¢g < landn njn 1, the conditiom i, > (c;=¢ )P is automatically satis ed. The proof is
complete. n

| Proofs of the lemmas

Proof of Lemma 1 Recall thatis the output of ALG forL clusters. Let®X) be the output of the
ALG for K clusters. Then, sinde K,

6B Q) &) where @)= min &():

The rstinequality is by the monotonicity of ALG and the second by its constant-factor approximation
property. Since by assumption 2 X K , we have

1 X 1=p
ma QC) ok KT
i=1
P =|
It follows that®(P) " . Recalling(9) and noting tha®(B = 1" ' kx; B, kP P we have
X0 1=p Xt 1=p
Qb )= 1 mink , BkP 1 k, Bk
n _ 2y ° _ '
i=1 i=1
X 1=p X 1=p
T e T T e
L L
n + n (86)

where the second line is the triangle inequality in the aforementibféd, ; X ) space. The proof is
complete.

Proof of Lemma 2.Consider the partition of the space by the Voronoi cells ef ( -). Assume
rst that there is a Voronoi cell that contains at least two distinct elements,&.g., ,, and |,
with k; 6 k2, both belonging to the Voronoi cell of,. That is,min- k k=k \Okfor



k = ki ka. Ask . LK Koy, \0k+ Ky, «Ok, at least one of th& = kj; k, satisfy
ke -k k k=2 andassume thisis true fkr= k;, we have

1= 1?p l='p
Q( 1 ) r't'l_lnpk k]_ \Ok n;n k k1 kzk % :

Otherwise, each Voronoi cell of contains at most one element of. On the other hand, each

element of belongs to at least one Voronoi cell afsince the union of Voronoi cells is the whole

space. It follows that there ake distinct Voronoi cells of , each of which contains exactly one

element of . Thus, there is an injective map: [K]! [L]such that, belongs to Voronoi cell of
(k) s that is,min~ k K ‘k=Kk K (k)k. Then,

X 1=p _
Q; ) aF Kk (k) K o do(5 )

The proof is complete. O

Proof of Lemma 3By assumption, there exists an injective map[K]! [L] such that

maxk bk
k2K k (k)

Then, isinvertible onim( ):= f (K): k 2 [K]g, with an inverse denoted as . We obtain
bk ; 8 2Im(): (S7)

First assume thdd 2 Im( ). We prove that (z;) = By by contradiction. Suppose thafz;) 6 4.
Then, we show thakx; b @K < KX h,,ik contradictingly = argmin KX b2 By the

K1y

triangle inequality

kxi Pgk kxi Lk+kPgy Lk o+ (S8)
Sincely 2 Im( ) and (z) 6 B, we have '(B) 6 z. By (S7) kbz,i 1(,Di)k . Therefore,
kxi Bk kB L,k kxi Lk
Koo amk KB gk
: (S9)
Since by assumption> 2 +2 |, the claimed contradiction follows by combinig8)and(S9).
Hence, we have(z)) = b whenb 2 Im( ). Dene! () = OYonim( ) [L]. Then,!

satises! (B) = z whenevels 2 Im( ). This nishes proof for the case = K.

Next, we de ne! for o 2 Im( ). SincePis an ef cient solution, there exists at least dn [n]
such thata = “g. When there is only one sué¢hwe can justlet (o) = ! (B) = z. When there
are at least two data points andx; suchthats = B = "o, we are going to show, by contradiction,
that their true cluster labels must be the same, &=, z; . Suppose that; 6 z;, then we will show

thatkx; bok >kx; b () K which contradict; being in the Voronoi cell opo. Inequality(S8)
still holds in this case. Furthermore

kxi Bk kB Lk kx Lk
kx Lk kx Bk
kK, ,kkx ,kkx Bk
2 kx bk (S10)
Sincex; is in the Voronoi cell ofb0 and’o Z2Im( ), we haveo & (z). Therefore,
ki Bk kx Pk
kx ,k+kPgy Kk

]

+ (S11)



Combining inequalities (S8), (S10) and (S11) and using the assumptiod +4 , we get
kxi Bk 3 > o+ kx Pk

which is the claimed contradiction. Therefore, we candenen[L]nIm( ) sothat! (i) = z
whenb 2 Im( ). Combining with the de nition oft onIm( ), we have successfully constructed a
surjective map :[L]! [K]satisfying! (I3) = z foralli 2 [n]. The proof is complete. O
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